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SUMMARY

Absolute risk is the probability that an individual who is free of a given disease at an initial age, a, will
develop that disease in the subsequent interval (a, t]. Absolute risk is reduced by mortality from com-
peting risks. Models of absolute risk that depend on covariates have been used to design intervention
studies, to counsel patients regarding their risks of disease and to inform clinical decisions, such as
whether or not to take tamoxifen to prevent breast cancer. Several general criteria have been used to
evaluate models of absolute risk, including how well the model predicts the observed numbers of events
in subsets of the population (‘calibration’), and ‘discriminatory power,’ measured by the concordance
statistic. In this paper we review some general criteria and develop specific loss function-based cri-
teria for two applications, namely whether or not to screen a population to select subjects for further
evaluation or treatment and whether or not to use a preventive intervention that has both beneficial
and adverse effects. We find that high discriminatory power is much more crucial in the screening
application than in the preventive intervention application. These examples indicate that the usefulness of
a general criterion such as concordance depends on the application, and that using specific loss functions
can lead to more appropriate assessments.

Keywords: Absolute risk model; Accuracy; Loss functions for clinical decisions; Negative predictive value; Positive
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1. INTRODUCTION

Absolute risk, also called ‘crude probability’ (e.g. Tsiatis, 1998), is the probability that a subject who is
free of the disease of interest at age a will be diagnosed with that disease in a subsequent age interval
(a, t]. To be explicit, if h1(u) is the cause-specific hazard at age u for the disease of interest and h2(u) is
the hazard of mortality from other causes, the absolute risk is

π =
∫ t

a
h1(u) exp

[
−

∫ u

a
{h1(v) + h2(v)} dv

]
du. (1.1)

Covariates are often used to model h1 and yield covariate-specific estimates of absolute risk that have
several uses. For example the breast cancer risk model of Gail et al. (1989), as modified (Anderson
et al., 1992; Costantino et al., 1999), has been used to plan intervention trials (Fisher et al., 1998), to
inform specific clinical decisions, such as whether or not to take tamoxifen to prevent breast cancer (Gail
et al., 1999), and to assist women who come for counseling.
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Several books (e.g. Hand, 1981, 1997; McLachlan, 1992; Pepe, 2003) and articles (e.g. Hand, 2001)
describe general methods to evaluate models for dichotomous outcomes, such as models of absolute risk.
In the medical literature, a variety of general criteria have been used to assess risk models. For ex-
ample independent validation studies have shown that the modified Gail model is ‘well calibrated’ in the
sense that the expected numbers (E) of breast cancers predicted for subsets of women agree well with
the observed numbers (O) of cancers that actually develop (Costantino et al., 1999; Rockhill et al., 2001).
Goodness-of-fit criteria based on O and E, including examination of the ratio O/E in the overall population
and in subsets, have been used to assess unbiasedness (or ‘calibration’). This model has been criticized,
however, on the grounds that it cannot reliably discriminate women who will develop breast cancer from
those who will not (Rockhill et al., 2001). One commonly used measure of discrimination is the concord-
ance statistic, c, which is the probability that a randomly selected woman with breast cancer will have a
higher projected risk than a randomly selected woman without breast cancer.

In this article, we present a general framework for assessing models of absolute risk and review
widely used general criteria (Section 2). We then contrast these general criteria with criteria based on
loss functions that are tailored to specific applications. We introduce a decision theoretic framework for
determining whether a preliminary population screening instrument is useful for selecting individuals
who require more definitive diagnostic evaluation or intervention (Section 3), and for deciding whether
or not to recommend an intervention that affects one health outcome favorably and another unfavorably
(Section 4). We show that the losses from using a model with imperfect discriminatory power are greater
in the screening application than in the intervention application. We illustrate these ideas further with
an example based on the Gail model (Section 5) before drawing conclusions in Section 6.

2. NOTATION AND GENERAL CRITERIA FOR ASSESSING ABSOLUTE RISK MODELS

We assume a sample of N individuals from an infinite population. We are interested in whether the i-th
individual will be diagnosed with a particular disease in the next 5 years (Yi = 1) or not (Yi = 0). In-
dividual i has a true probability πi = P(Yi = 1) defined as in (1.1) and a vector of predictors Xi , and
we consider a risk prediction model r(x), which is a mapping from the set, �, of possible values of X to
[0,1]. The quantity πi contains all the information about the risk of individual i. The joint distribution
of (Y, π, X ) is πY (1 − π)1−Y G(π, X), where G is the joint distribution of π and X , and Y is condition-
ally independent of any other factors given π . The distribution G gives rise to the marginal distributions
Gx and Gπ and the conditional distribution G(π |x). This formulation accommodates determinists, who
assume πi is 1 or 0, as well as those who allow 0 < πi < 1. Although we would like to know πi for
individual i, we typically have access only to a risk model prediction r(xi ) based on covariates X = xi .
The model r(x) is “perfectly calibrated” if

r(x) = η(x) ≡ E(π |x) =
∫

π dG(π |x), for each x . (2.1)

Some risk models r(x) map many values of x into a single risk. For example all x values within given
ranges of a continuous distribution may be assigned the same risk. If r(x) is such a many-to-one function,
it induces a partition of � into subsets A1, A2, . . . , Ak on which r is constant. If x is any value in subset
A j , then r is “weakly calibrated” if r(x) = E{π |x ∈ A j } for all j = 1, 2, . . . , k. A weakly calibrated
model is perfectly calibrated if π is constant for every x ∈ A j , for all j = 1, 2, . . . , k. The distribution of
r is

F(r) =
∫

{x : r(x)�r}
dGx (x). (2.2)
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If r is perfectly calibrated, F(r) equals

Fη(r) ≡ P[η(x) � r ] =
∫

{x : η(x)�r}
dGx (x), (2.3)

but otherwise (2.2) and (2.3) need not be equal. Before we discuss a decision theoretic framework for
assessing the performance of model r(x), we review four classes of general criteria that are used for
this purpose. We express these criteria in terms of r(xi ) and F(r), but they can be applied to πi and
Fη(r). We will illustrate some of the criteria with two risk models chosen to describe the probability of
a rare outcome, P(Yi = 1) = E(r) = µ = 0.01. The first is a Beta distribution Beta(0.01,0.99) with
standard deviation 0.070; the second is Beta(1,99) with standard deviation 0.0099. Thus, the first reflects
considerably more dispersed risk and a better opportunity to discriminate individuals who will develop
disease from those who will not.

2.1 Calibration

For simplicity, suppose we have an ‘external’ sample (Yi , πi , Xi )
N
i=1 that is independent of any data

used to estimate r(x). Several measures of calibration or goodness-of-fit of the model r(x) to the data
are commonly recommended. One approach is to partition � into measurable sets A1, A2, . . . , AL and
compare the observed numbers of events Ok = ∑

Yi I (Xi ∈ Ak) with the expected numbers of events
Ek = {∑

r(Xi )I (Xi ∈ Ak)
}
. If r(x) � 1 for all X , then Ok is approximately Poisson, and if r(x) is

well calibrated, Ok has mean Ek . Thus, confidence intervals can be constructed for ratios such as Ok/Ek

or its reciprocal (see e.g. Costantino et al., 1999; Rockhill et al., 2001). An L degree-of-freedom global
goodness-of-fit statistic,

∑
(Ok − Ek)

2/Ek can also be computed. A commonly used partitioning is based
on ordering r(x) and grouping together all risk factors X that correspond to deciles of r (Lemeshow and
Hosmer, 1982).

Another criterion in this class is the mean squared error, or Brier (1950) statistic, B = N−1×∑{Yi − r(Xi )}2, which can be decomposed into bias and intrinsic variability,

B = N−1
[∑

{πi − r(Xi )}2 +
∑

(Yi−πi )
2
]

. (2.4)

Equation (2.4) demonstrates that even for a perfect model in which r(Xi ) = πi for all i , there is inherent
variability in the predicted outcome, N−1 ∑

(Yi −πi )
2 = Var(Yi ), unless the process is deterministic with

πi = 1 or 0 for all i .

2.2 Discrimination

A second class of criteria describes how well the decision rule r(x) “discriminates” those who will develop
disease from those who will not. If r is perfectly calibrated, the distribution of r among cases (Y = 1) is

Fcase(v) ≡ P(r � v|Y = 1) = µ−1
{∫ ν

o
r dF(r)

}
, (2.5)

where µ = ∫ r dF(r) is the mean risk in the general population. Likewise, the distribution of r among
those with Y = 0 is

Fcontrol(v) ≡ P(r � v|Y = 0) = (1 − µ)−1
∫ v

0
(1 − r) dF(r). (2.6)

Figure 1(a) displays Fcase for Beta(0.01,0.99) (solid) and for Beta(1,99) (dash); corresponding distribu-
tions Fcontrol are shown as dash–dots and dots, respectively. Only for Beta(0.01,0.99) are Fcase and Fcontrol
well separated.
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Fig. 1. (a) Distributions Fcase and Fcontrol for cases and controls from the underlying distributions F =
Beta(0.01,0.99) and F = Beta(1,99). (b) ROC curves for the Beta(0.01,0.99) distribution (solid) and the Beta(1,99)
distribution (dash–dot).

Note that Fcase and Fcontrol and any functionals of them can be estimated from random samples of
cases and non-cases and do not require prospective follow-up, unlike calibration criteria. The sensitivity
of a classification rule based on cutoff r∗ is sens(r∗) = P(r � r∗|Y = 1) = 1 − Fcase(r∗−), where r∗−
denotes a value just smaller than r∗, to allow for a discrete distribution Fcase. Similarly, the specificity is
spec(r∗) = P(r < r∗|Y = 0) = Fcontrol(r∗−). The ROC curve is a plot of sens(r∗) against 1 − spec(r∗)
as r∗ varies from 0 to ∞, as illustrated by the solid and dash–dotted loci in Figure 1(b) for Beta(0.01,0.99)
and Beta(1,99), respectively. The area under the ROC curve, AUC, also called the “concordance,”
c, is the probability that a randomly selected r from Fcase will exceed a randomly selected r from
Fcontrol. The AUCs are 0.995 and 0.751, respectively, for the underlying distributions Beta(0.01,0.99) and
Beta(1,99). Several authors recommended the partial area under the ROC curve corresponding to ranges
of specificity of medical interest as being preferable to AUC (Wieand et al., 1989; Pepe, 2003; Dodd and
Pepe, 2003).

Features of F itself give insight into the discriminatory power of r(x). For example if values of r(x)
are near 0 and 1 only, then Fcase will be concentrated near 1 and Fcontrol near 0. Various measures of
dispersion of F can be used to characterize discrimination. The Lorenz curve (e.g. Dagum, 1985),

L(p) = µ−1
∫ ξp

0
r dF(r), (2.7)

describes the proportion of population risk that falls at or below the p-th quantile of risk, ξp = F−1(p), as
shown in Figure 2 for the Beta(0.01,0.99) and Beta(1,99) distributions. The proportion of the population
risk in the 100p% of the population at highest risk is 1 − L(1 − p). If risk is highly concentrated, the
model r(x) can be useful for detecting a small proportion of the population that carries most of the risk and
requires preventive intervention (Pharoah et al., 2002). For example for p = 0.1, 1 − L(0.9) is 1.000 for
Beta(0.01,0.99) and only 0.103 for Beta(1,99). The Gini index is twice the area between the equiangular
line (a plot of p against p) and the Lorenz curve (a plot of L(p) against p for 0 � p � 1). The Gini index
is a measure of risk inequality in the population. The Gini indices are, respectively, 0.980 and 0.498 for
the Beta(0.01,0.99) and Beta(1,99) distributions. Sensitivity at r∗ = ξp is 1 − L(p). For rare diseases
with r(x) � 1, specificity at r∗ = ξp is approximately p. Hence, the AUC approximately equals the
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Fig. 2. Lorenz curves for Beta(1,99) distribution (dash–dot) and Beta(0.01,0.99) distribution (solid). The Gini index
is twice the area between the equiangular line (dotted) and the Lorenz curve.

area above the Lorenz curve, and twice the AUC minus one approximates the Gini index. The values for
2(AUC) − 1 are 0.990 and 0.503, respectively, for the Beta(0.01,0.99) and Beta(1,99) distributions, in
good agreement with the Gini indices because P(Y = 1) = 0.01 in these examples.

2.3 Accuracy

A third class of criteria, termed ‘accuracy’ by Hand (2001), refer to how accurately a dichotomization
r � r∗ versus r < r∗ classifies the outcomes Y . Here r∗ is called the ‘cutoff’ value. Two commonly
used measures of accuracy are positive predictive value, P(Y = 1|r � r∗) and negative predictive
value, P(Y = 0|r < r∗). The total correct classification probability, P(r � r∗)P(Y = 1|r � r∗) +
P(r < r∗)P(Y = 0|r < r∗), or its complement, the misclassification probability P(r � r∗)P(Y =
0|r � r∗) + P(r < r∗)P(Y = 1|r < r∗), is sometimes taken as measures of accuracy or inaccuracy,
respectively. These latter criteria would be appropriate for a decision problem in which each type of mis-
classification carried equal loss and no loss is incurred with correct classification. Public health decisions
to screen a population (Section 3) or clinical decisions to intervene to prevent disease (Section 4) do not
have such symmetric losses, however. For all values in the range 0.05 < r∗ < 0.95, the negative predic-
tive value and total correct classification probability are near (1 − µ) = 0.99 for both the Beta(0.01,0.99)
and Beta(1,99) distributions. For a rare disease, these quantities depend very little on sensitivity. By
contrast, at r∗ = 0.25, for example, the positive predictive value is 0.54 for Beta(0.01,0.99) and 0.26 for
Beta(1,99).

2.4 Proportion of variation explained

Criteria have been proposed (e.g. Efron, 1978; Korn and Simon, 1991; Liao and McGee, 2003) to de-
termine how much variability of risk is explained by the model r(x). The entropy function H(r) =
−r ln(r) − (1 − r) ln(1 − r) describes the uncertainty of prediction. For r near 0 or 1, H(r) is near



232 M. H. GAIL AND R. M. PFEIFFER

0 and H(0.5) is the maximum entropy. The ‘null risk model’ assigns each person in the population
the average risk µ and has entropy H0 = H(µ). The null entropy is 0.056 for Beta(0.001,0.99) and
Beta(1,99). Suppose instead, we use a well calibrated model r(x) and compute the average conditional
entropy, H̄ = ∫H(r) dF(r). The fractional reduction in entropy or proportion of variation explained is
(H0 − H̄)/H0, which is the same as the fractional reduction in binary deviance considered by Liao and
McGee (2003). For the Beta(0.01,0.99) and Beta(1,99) distributions, the fractional reductions in entropies
are 0.71 and 0.076, respectively, because the former represents a much more informative distribution of
risks. See Haberman (1982) and Gilula and Haberman (1995) for other measures of dispersion.

3. DECISION THEORETIC MODEL FOR SCREENING

Although general criteria for model assessment are attractive because they can be used regardless of the
application, more focused criteria are preferable for specific applications if one is willing to posit a model
for loss associated with classification errors. We consider a screening application of a risk model r(x).
For each subject, a decision is taken for further evaluation or preventive intervention, δ(x) = 1, or no
further evaluation or intervention, δ(x) = 0, based on measured covariates X = x . Depending on the true
but unknown eventual state of the individual, Y , the losses are as shown in Table 1. We assume that the
screening operation has no impact on πi = P(Yi = 1). For an arbitrary decision rule, δ(x), the expected
loss is∫

[C11δ(x)η(x) + C10δ(x){1 − η(x)} + C01{1 − δ(x)}η(x) + C00{1 − δ(x)}{1 − η(x)}] dGx , (3.1)

which is minimized by minimizing the integrand for

{
δ(x) = 1, if η(x) � (C10 − C00)/(C10 + C01 − C00 − C11),

δ(x) = 0, otherwise.
(3.2)

For a perfectly calibrated model r(x) with δ(x) = 1 for r � r∗ and δ(x) = 0 otherwise, the expected loss
is

EL = C11

∫ 1

r∗
r dF(r) + C01

∫ r∗

0
r dF(r) + C10

∫ 1

r∗
(1 − r) dF(r) + C00

∫ r∗

0
(1 − r) dF(r). (3.3)

The value, r∗, that minimizes EL is

r∗ = (C10 − C00)/(C10 + C01 − C00 − C11). (3.4)

The minimal expected loss at r∗ is

ELmin = C11µ sens(r∗)+C01µ {1− sens(r∗)}+C10(1−µ){1− spec(r∗)}+C00(1−µ)spec(r∗). (3.5)

Table 1. Losses for a screening problem

Decision Diseased, Y = 1 Not diseased, Y = 0

Further evaluation, δ = 1 C11 C10
No further evaluation, δ = 0 C01 C00
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Equation (3.5) is equivalent to (2.17) in Pepe (2003) if C00 = 0. If r(x) has perfect discrimination at
r∗, sens(r∗) = spec(r∗) = 1, and

ELperfect = C11µ + C00(1 − µ). (3.6)

To illustrate these ideas, consider a self-administered questionnaire designed to estimate risk of col-
orectal cancer in the next 5 years. The decision δ = 1 denotes referring the subject for further evaluation,
such as colonoscopy, whereas δ = 0 denotes no further evaluation. Compared to the consequences of
misclassifying a subject, we assume that the costs of administering and interpreting the questionnaire are
negligible (C00 = 0). Because colonoscopy or other diagnostic evaluations entail small but definite risks,
such as bleeding or perforation, we assign losses C10 = 1. The greatest cost is C01 = 100, because failing
to evaluate a subject who will develop colon cancer in the next 5 years (Y = 1) can result in death or
severe morbidity. The cost C11 = 0.1C01 + C10 = 11 is chosen on the basis of the fact that the risks
of colonoscopy must still be borne (C10 = 1), but the early evaluation may reduce the risks of death or
severe morbidity in a person otherwise destined to develop colon cancer by an appreciable factor, which
we take to be 0.1. The critical risk is r∗ = 1/(1 + 100 − 11) = 1/90, and ELperfect = µC11 = 0.1100 for
µ = 0.01. For any other rule,

ELmin = 11µ sens(r∗) + 100µ{1 − sens(r∗)} + (1 − µ){1 − spec(r∗)}. (3.7)

One way to assess how much the loss is inflated by using r(x) instead of a rule with perfect sensitivity
and specificity is to compute the loss ratio = ELmin/ELperfect. If all subjects are screened, sens = 1.0,
spec = 0.0 and the expected loss is 1.10, a 10-fold increase over ELperfect. If none are screened (sens =
0.0, spec = 1.0), the loss is 1.00, a 9.09-fold increase above the minimum risk. Figure 3 shows the loss
ratio for various values of sensitivity and specificity. A test with sensitivity 0.9 and specificity 0.2 has
loss ratio of 9.01. A test with sensitivity 0.2 and specificity 0.6 has loss ratio of 9.27. These are the kinds

Fig. 3. Plot of loss ratio for screening against sensitivity for various values of specificity. Comparison is against a
model with perfect sensitivity and specificity. Parameters defined in Section 3 include overall disease risk µ = 0.01
and costs C11 = 11, C10 = 1, C01 = 100 and C00 = 0 (see Table 1).
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of sensitivities and specificities that a test with modest discriminatory power could exhibit, as shown in
Figures 1 and 2 of Pepe et al. (2004). Much higher sensitivities and specificities are needed to achieve a
loss ratio near 1.0 for this screening example (Figure 3).

4. A MODEL FOR CLINICAL DECISION-MAKING

We present a decision theoretic framework for deciding whether or not to use a preventive intervention
that affects some endpoints favorably and some unfavorably. For example Gail et al. (1999) weighed the
benefits of tamoxifen in reducing risks from breast cancer and hip fracture against the increased risks from
stroke, pulmonary emboli and endometrial cancer in women taking tamoxifen. For ease of exposition, we
consider only two outcomes and use the terminology of invasive breast cancer and stroke, but the ideas
extend to multiple outcomes.

We let δ(x) = 1 or δ(x) = 0 according to whether a woman is given a preventive intervention or not.
Each woman has two outcome variables, Y δ

1 = 1 or 0 according to whether she develops invasive breast
cancer or not over a defined time interval, and Y δ

2 = 1 or 0 is defined similarly for stroke. Although we
only get to observe (Y δ

1 , Y δ
2 ) for δ = 1 or for δ = 0 because each woman either receives the intervention

or not, the complete counterfactual (e.g. Maldonado and Greenland, 2002) data describing outcomes in
the presence and absence of intervention are (Y 0

1 , Y 0
2 , Y 1

1 , Y 1
2 ). The effect of intervention is to change the

distribution fromP0(Y 0
1 , Y 0

2 ) to P1(Y 1
1 , Y 1

2 ). We extend the notation in Section 2 to allow for two bivariate
outcomes and intervention by defining the vectors πδ = {Pδ(Y δ

1 = 1, Y δ
2 = 1), Pδ(Y δ

1 = 1, Y δ
2 = 0),

Pδ(Y δ
1 = 0, Y δ

2 = 1), Pδ(Y δ
1 = 0, Y δ

2 = 0)}�for δ = 1 or 0.
Likewise, we define risk models rδ(x) = {r δ

11(x), r δ
10(x), r δ

01(x), r δ
00(x)}� to predict the quadri-

nomial outcomes for δ = 1 or 0. The i-th individual in the sample has random variables (Y 0
1i , Y 0

2i , Y 1
1i ,

Y 1
2i , π0i , π1i , Xi )

N
i=1 with joint distribution Q(Y 0

1i , Y 0
2i |π0i )Q(Y 1

1i , Y 1
2i |π1i )G(π0i , π1i , Xi ), where

Q(Y δ
1i , Y δ

2i |π0i ) is the quadrinomial for outcomes for δ, and G(π0i , π1i , Xi ) is the joint distribution of
π0i , π1i and Xi . This model induces a joint distribution, F , for (r0(x), r1(x)) and marginal distributions
F0 and F1 for r0(x)and r1(x), respectively. A model is perfectly calibrated if each of the components of
r0(x) and r1(x) satisfies the equivalent of (2.1).

A decision is taken on the basis of X whether to intervene (δ = 1) or not (δ = 0). The corresponding
losses are in Table 2. We assume that the losses from each disease outcome are additive. For example the
loss for δ = 1, Y 1

1 = 1 and Y 1
2 = 0 is (C111 + C210). The additivity assumption might not be realistic in

some settings, but our methods can be generalized for non-additivity by including separate losses for each
combination of δ, Y δ

1 and Y δ
2 .

The additivity assumption simplifies the calculation of the expected loss. If the risk models are well
calibrated, the expected loss for a decision rule δ(x) = 1 or 0 is

EL(δ) =
∫ ⎧⎨

⎩
1∑

j=0

1∑
k=0

(C11 j + C21k)δ(x)r1
jk(x) + (C10 j + C20k)(1 − δ(x))r0

jk(x)

⎫⎬
⎭ dGx (x), (4.1)

Table 2. Losses for each clinical outcome associated with a preventive intervention (δ = 1) or
non-intervention (δ = 0)

Intervention status Breast cancer Stroke

Y δ
1 = 0 Y δ

1 = 1 Y δ
2 = 0 Y δ

2 = 1

δ = 1 C110 C111 C210 C211
δ = 0 C100 C101 C200 C201
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where Gx is the marginal distribution of X . Minimizing the integrand in (4.1) for each x leads to the
optimal decision rule δ∗(x) given by⎧⎨

⎩δ∗(x) = 1, if
∑1

j=0

∑1

k=0

{
(C11 j + C21k)r

1
jk(x) − (C10 j + C20k)r

0
jk(x)

}
� 0,

δ∗(x) = 0, otherwise.
(4.2)

The corresponding minimal loss for the risk models r0(x)and r1(x) is

ELmin = EL(δ∗). (4.3)

If we had complete information (Y 0
1 , Y 0

2 , Y 1
1 , Y 1

2 ), we would be able to choose the optimal strategy for
each woman by intervening only if C11Y 1

1i
+ C21Y 1

2i
� C10Y 0

1i
+ C20Y 0

2i
. Thus, the expected loss with this

complete information would be

ELperfect =
∫∫∫

min(C11Y 1
1
+C21Y 1

2
, C10Y 0

1
+C20Y 0

2
) dQ(Y 0

1 , Y 0
2 |π0) dQ(Y 1

1 , Y 1
2 |π1) dG(π0, π1), (4.4)

where G(π0, π1) is the indicated marginal distribution of G(π0, π1, X). Equation (4.4) is analogous to
(3.6) for a single outcome, but requires much more knowledge of the underlying probability structure.
Moreover, with data available only on (Y 0

1 , Y 0
2 )or on (Y 1

1 , Y 1
2 ) for each subject, one cannot estimate the

joint distributionG(π0, π1) needed to compute (4.4).
Although one cannot compute ELperfect from (4.4), one can still hope to obtain a good decision rule

from (4.2) and estimate its expected loss from (4.3). Two principal difficulties in implementing this
approach are defining the losses in Table 2 and developing well calibrated joint risk models, r0(x)and
r1(x). Gail et al. (1999) considered age- and race-specific risks over 5-year age intervals and made
assumptions under which one can carry out such an analysis. They assumed that invasive breast cancer
and stroke carried equivalent losses that were much greater than the inconveniences and other losses of
intervention. Under this assumption, one can set C100 = C110 = C200 = C210 = 0 and C101 = C111 =
C201 = C211 = 1. Because both invasive breast cancer and stroke are rare events on a 5-year risk interval,
a risk model might reasonably set r0

11(x) = 0 and r1
11(x) = 0. Because no risk factors were available to

model stroke risk, Gail et al. used the average risk, s, to model r0
01(x) = s and r1

01(x) = ρsr0
01(x) = ρss,

where ρs = 1.6 is the factor by which treatment increases stroke risk (Fisher et al., 1998). Similarly,
r0

10(x) = b(x), where b(x) is a well calibrated model for absolute invasive breast cancer risk, such as
model 2 in Costantino et al. (1999). In the presence of tamoxifen, the risk of breast cancer is reduced
(Fisher et al., 1998) to approximately r1

10(x) = ρbr0
10(x) = ρbb(x), where ρb = 0.5. The optimal rule is,

from (4.2), δ∗(x) = 1 if b(x)(ρb − 1) + s(ρs − 1) � 0 and δ∗(x) = 0 otherwise.
One should intervene if b(x) � (0.6/0.5)s = 1.2s. The expected loss from (4.1) is

ELmin =
∫

{I (b(x) � 1.2s)(ρbb(x) + ρss) + I (b(x) < 1.2s)(b(x) + s)} dGx (x)

or, equivalently,

ELmin = ρbµbsensb(1.2s) + ρss{1 − Fb(1.2s)} + µb{1 − sensb(1.2s)} + s Fb(1.2s). (4.5)

In (4.5), µb is the mean breast cancer risk, sensb(b∗)is the sensitivity of the breast cancer risk model
at b(x) = b∗ and Fb denotes the distribution of b(x). For a 5-year risk projection, b(x) � 1 and
specb(b

∗) ≡ (1 − µb)
−1

∫ b∗
0 (1 − b) dFb. Hence, (4.5) is approximately

ELmin = ρbµbsensb(1.2s) + ρss{1 − specb(1.2s)} + µb{1 − sensb(1.2s)} + s{specb(1.2s)}. (4.6)
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Fig. 4. Loss ratio for the clinical decision to give tamoxifen plotted against sensitivity of the model for breast cancer
for various values of specificity. Comparison is against a breast cancer model with perfect sensitivity and specificity.
Parameters in Section 4 include equal overall probabilities of breast cancer and stroke of 0.03, multiplicative effects
of tamoxifen on chances of breast cancer of 0.5 and on stroke of 1.6 and losses (Table 2) of C100 = C110 = C200 =
C210 = 0 and C101 = C111 = C201 = C211 = 1.

For µb = s = 0.03, ρs = 1.6 and ρb = 0.5, (4.2) reduces to

ELmin = 0.078 − 0.015 sensb(1.2s) − 0.018 specb(1.2s). (4.7)

Although we cannot compare ELmin for this joint risk model with ELperfect without making strong as-
sumptions on G(π0, π1), we can ask how well the given joint risk model works relative to a similar model
with perfect sensitivity and specificity for the breast cancer diagnosis at b∗ = 1.2s. The loss ratio com-
pared to this model is (4.7) divided by 0.078−0.015−0.018 = 0.045 (Figure 4). Loss ratios get no higher
than 1.73, even for an implausibly bad model for breast cancer risk with zero sensitivity and specificity.
For sensitivity 0.9 and specificity 0.2, the loss ratio is only 1.35, which can be compared to the loss ratio
9.01 for the screening application (Section 3). For sensitivity 0.2 and specificity 0.6, the loss ratio is only
1.43, which is much smaller than the loss ratio of 9.27 in the screening application (Section 3). Thus,
improvements in the sensitivity and specificity of the breast cancer risk prediction do not yield dramatic
reductions in expected loss concerning the decision to take tamoxifen.

5. EXAMPLE

To further illustrate the points in Sections 3 and 4, we analyzed data from the 2000 National Health
Interview Survey (see Freedman et al., 2003) to determine the distribution of 5-year absolute risk in
women aged 55–60 years, as estimated from the modified Gail model (model 2 in Costantino et al.,
1999). The distribution had mean 0.0132 and standard deviation 0.0778. We approximated this dis-
tribution with a Beta(2.8386,211.83) distribution, which also has mean 0.0132 and standard deviation
0.0778. The corresponding AUC was 0.66. Compared to a model with perfect sensitivity and speci-
ficity, the loss ratio for the screening application in Section 3 was, from (3.7) with r∗ = 1/90 and
µ = 0.0132, 0.9589/0.1452 = 6.60. Thus, based on the loss parameters in Section 3, the model would
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not perform nearly as well as a model with perfect sensitivity and specificity for screening a population.
This same model performed reasonably well for helping decide whether to take tamoxifen to prevent
breast cancer based on the losses in Section 4. From data in Gail et al. (1999), we set the 5-year stroke
risk for a 55-year-old woman to be s = 0.0055. Setting µb = 0.0132, ρb = 0.5 and ρs = 1.6, we obtained
b∗ = 1.2s = 0.0066, sens(b∗) = 0.933 and spec(b∗) = 0.200. The loss ratio, compared to a breast cancer
model with sens(b∗) = spec(b∗) = 1 was, from (4.6), 0.01518/0.121 = 1.25. Thus, the model performed
reasonably well in this context, and there was comparatively little to be gained by improving the breast
cancer risk model. Perhaps better performance could be obtained by refining the model for stroke risk
instead.

6. DISCUSSION

We presented a probabilistic framework for evaluating models of absolute risk, reviewed some general
criteria for assessing such models (Section 2) and discussed a decision theoretic approach for screening
a population for disease (Section 3) and for deciding whether to administer a preventive intervention that
has adverse and beneficial effects (Section 4). Although general criteria are appealing because they can
be compared across a variety of applications, their casual use can result in the choice of inferior criteria
for assessing models in particular applications. Specifically, we believe there has been over-emphasis on
the concordance statistic (c or AUC) as a summary measure of model performance, irrespective of the
intended application. The examples in Sections 3, 4 and 5 indicate that high discriminatory power can
be more important in a screening application than in deciding whether or not to take a preventive inter-
vention that has both beneficial and adverse effects. Some of the popularity of the concordance statistic
may be due to the fact that one can estimate it from samples of cases and controls, whereas estimation
of criteria relating to calibration (Section 2.1), accuracy (Section 2.3), proportion of variation explained
(Section 2.4) and expected loss (Sections 3 and 4) requires follow-up information from a cohort.

The decision theoretic approach to evaluation of diagnostic tests has been discussed by Pepe
(2003, pp. 31–33, 71–72 and 269–275), and more general aspects of medical decision-making are de-
scribed in Weinstein et al. (1980). Baker (2000) used the utility function, benefit x sensitivity − cost x
(1 − specificity), to evaluate acceptable regions of sensitivity and specificity for screening applications
and concluded that levels of specificity above 0.98 were often required, in agreement with the analysis in
Section 3 indicating a need for high sensitivity and specificity.

One drawback of application-specific decision theoretic approaches is that it is difficult to describe
and estimate realistic loss functions, leaving such analyses open to criticisms of subjectivity or of naive
formulation of the true loss structure. It should be noted, however, that general criteria often reflect an
implicit preference for a specific loss structure. For example the total misclassification rate is an opti-
mal criterion if correct classification carries no loss and all types of misclassification carry equal loss.
Likewise, various measures of the proportion of variability explained can be derived from particular loss
functions (Gilula and Haberman, 1995).

The approach in this paper can be used to evaluate the effect on minimal expected loss that occurs
when r(x) is biased or is only weakly calibrated (Section 2). Additional work might include extensions
to non-additive loss functions, inference for comparing two or more models with respect to these criteria
and use of Bayesian methods to exploit the hierarchical structure in Section 4.
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